
E1, µ1, ρ1

a

r0

K

φh1

h1 + h2

K

φ

q0

Journal of Sound and Vibration (1997) 205(5), 689–691

LETTERS TO THE EDITOR

DYNAMIC DISPLACEMENTS OF A TRANSDUCER ELEMENT SUBJECTED TO
FORCED EXCITATION

H. C. S  A. T

Structural Engineering Research Group, Facultad Regional Haedo, Universidad Tecnológica
Nacional, 1706-Haedo, Argentina



P. A. A. L

Institute of Applied Mechanics (CONICET) and Department of Engineering,
Universı́dad Nacional del Sur 8000-Bahia Blanca, Argentina

(Received 28 October 1996)

1. 

Transverse vibrations of the structural element shown in Figure 1 are of interest from the
point of view of the design of certain ultrasonic transducers. The problem has originated
several publications dealing with free [1–3] and forced vibrations [4]. These studies have
dealt with variational solutions which employed very convenient polynomial co-ordinate
functions.

The present note deals with an independent solutions of the forced vibrations situation,
obtained by means of a standard finite element code. The dynamic displacements are
obtained at the plate center for two types of ideal, extreme boundary conditions: rigidly
clamped and simply supported, and the results are compared with those evaluated
analytically [4].

Figure 1. Vibrating structural element subjected to q0 cos vt type excitation.
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Figure 2. Finite element mesh.

2.   

The discretized model is shown in Figure 2: 64 quadrangular elements for the plate of
thickness h1 and 64 triangular elements for the plate portion of thickness (h1 + h2) have
been used. The total number of nodes is 117, each one with three degrees of freedom:
displacement, W, and rotations: ux (corresponding to the x-axis) and uy (corresponding to
the y-axis). Due to symmetry considerations only one quarter of the system was
considered.

T 1

Comparison of dynamic displacement amplitudes at the plate center

W/(q0a4/D1) Finite Boundary
h2/h1 V00 V01 a Analytical (I) Element (II) Conditions

0 10·215 39·77 0·2 0·01630 0·0162 (A)
0·4 0·01872 0·0186
0·6 0·02479 0·0247
0·8 0·04461 0·0445

4·935 29·72 0·2 0·06640 0·0662 (B)
0·4 0·07603 0·0758
0·6 0·10010 0·0998
0·8 0·17875 0·1784

1/2 11·214 46·94 0·2 0·00938 0·0094 (A)
0·4 0·01078 0·0108
0·6 0·01426 0·0144
0·8 0·02572 0·0259

5·902 35·20 0·2 0·03372 0·0349 (B)
0·4 0·03862 0·0400
0·6 0·05089 0·0527
0·8 0·09099 0·0944

1 12·191 54·62 0·2 0·00618 0·0066 (A)
0·4 0·00710 0·0075
0·6 0·00941 0·0100
0·8 0·01694 0·0181

6·518 41·87 0·2 0·02205 0·0251 (B)
0·4 0·02526 0·0287
0·6 0·03328 0·0379
0·8 0·05949 0·0677

Note: (I): Approximate values determined by means of a variational approach [4]. (II): Results obtained using
the finite element method. (A) Clamped, (B) Simply supported.
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3.  

All calculations have been performed for Poisson’s ratio (m)=0·30 and for r0/a=1/2.
The results obtained in the present study are shown in Table 1, which also contains the
first two natural frequency coefficients corresponding to axisymmetric modes
(V0j =zrh/D1v0ja2). The dynamic displacement at the plate center has been determined
for h2/h1 =0 (constant thickness case) 1/2 and 1.

Excellent agreement is attained for h2/h1 =0 for all the values of the parameter
a=V/V01, where V=zrh/D1va2 (exciting frequency coefficient).

Very good engineering agreement is observed for h2/h1 =1/2 (the maximum difference
is of the order of 5% in the case of the simply supported plate for a=0·8).

The agreement is not as good when h2/h1 =1 (admittedly the overstep is rather
exaggerated now). Nevertheless in the case of the clamped plate the analytical approach
yields a result which is 6% lower than the finite element value (presumably more accurate)
for a=0·8 while, when the plate is simply supported, the difference is of the order of 11%
for the same value of a.

It is observed that for the cases studied the agreement is always better when the plate
is clamped. It is important to point out that the results obtained in reference [4] were
calculated using four polynomial co-ordinate functions. The accuracy can be improved
using a larger number of approximating functions. One may conclude by saying that the
analytical approach yields, in a simple fashion, useful results from the point of view of
determining natural frequencies and first-order sound radiation determinations.
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